Old Earth Ministries Online Dinosaur Curriculum

Free online curriculum for homeschools and private schools

From Old Earth Ministries (We Believe in an Old Earth...and God!)

NOTE:  If you found this page through a search engine, please visit the intro page first. 


Lesson 14 - Allosaurus Part 1

Allosaurus is a genus of large theropod dinosaur that lived 155 to 145 million years ago, in the late Jurassic period (Kimmeridgian to Tithonian). The name Allosaurus means "different lizard" and is derived from the Greek. The first remains that can definitely be ascribed to this genus were described in 1877 by Othniel Charles Marsh. As one of the first well-known theropod dinosaurs, it has long attracted attention outside of paleontological circles, and has been a lead dinosaur in several films and documentaries.

Allosaurus was a large bipedal predator with a large skull, equipped with dozens of large, sharp teeth. It averaged 28 feet (8.5 meters) in length, though fragmentary remains suggest it could have reached 39 feet (12 meters). Relative to the large and powerful hindlimbs, its three-fingered forelimbs were small, and the body was balanced by a long, heavy tail.
Allosaurus vs Stegosaurus
Video from Discovery/Science Channel


Quick Facts


Length:  32 feet

Height:  13 feet at hips

Weight:  5,000 lbs

Date Range:  155 - 145 Ma, Kimmeridgian-Tithonian Age, Jurassic Period



Mounted A. fragilis skeleton, San Diego Natural History Museum

Allosaurus was a typical large theropod, having a massive skull on a short neck, a long tail and reduced forelimbs. Allosaurus fragilis, the best-known species, had an average length of 8.5 meters (28 ft), with the largest definitive Allosaurus
Allosaurus Size comparison
(Picture Source)
 specimen (AMNH 680) estimated at 9.7 meters long (32 ft), and an estimated weight of 2.3 metric tons (2.5 short tons).  As with dinosaurs in general, weight estimates are debatable. Since 1980 estimates for Allosaurus have ranged between 700 kg (1,500 lbs) and 4,000 kg (8,800 lbs). Using the subadult specimen nicknamed "Big Al", researchers using computer modelling arrived at a best estimate of 1,500 kilograms (3,300 lb) for the individual, but by varying parameters they found a range from approximately 1,400 kilograms (3,100 lb) to approximately 2,000 kilograms (4,400 lb).

The bulk of Allosaurus remains have come from North America's Morrison Formation, with material also known from Portugal and possibly Tanzania.  As the prominent large predator in the Morrison Formation, Allosaurus was at the top of the food chain, probably preying on contemporaneous large herbivorous dinosaurs and perhaps even other predators (e.g. Ceratosaurus). Potential prey included ornithopods, stegosaurids, and sauropods. Some paleontologists interpret Allosaurus as having had cooperative social behavior, and hunting in packs, while others believe individuals may have been aggressive toward each other, and that congregations of this genus are the result of lone individuals feeding on the same carcasses. It may have attacked large prey by ambush, using its upper jaws like a hatchet.

Physical Description


Allosaurus Skull

Skull cast, Oklahoma Museum of Natural History (Picture Source)

The skull and teeth of Allosaurus were modestly proportioned for a theropod of its size. Paleontologist Gregory S. Paul gives a length of 33.3 inches for a skull belonging to an individual he estimates at 26 feet long. Each premaxilla (the bones that formed the tip of the snout), held five teeth with D-shaped cross-sections, and each maxilla (the main tooth-bearing bones in the upper jaw) had between fourteen and seventeen teeth; the number of teeth does not exactly correspond to the size of the bone. Each dentary (the tooth-bearing bone of the lower jaw) had between fourteen and seventeen teeth, with an average count of sixteen. The teeth became shorter, more narrow, and more curved toward the back of the skull. All of the teeth had saw-like edges. They were shed easily, and were replaced continually, making them common fossils.

Inside the lacrimal bones were depressions that may have held glands, such as salt glands. Within the maxillae were sinuses that were better developed than those of more basal theropods such as Ceratosaurus and Marshosaurus; they may have been related to the sense of smell, perhaps holding something like Jacobson's organ. The roof of the braincase was thin, perhaps to improve thermoregulation for the brain. The skull and lower jaws had joints that permitted motion within these units. In the lower jaws, the bones of the front and back halves loosely articulated, permitting the jaws to bow outward and increasing the animal's gape.

Postcranial skeleton

Allosaurus had nine vertebrae in the neck, fourteen in the back, and five in the sacrum supporting the hips. The number of tail vertebrae is unknown and varied with individual size, estimated to be 45 to 50. There were hollow spaces in the neck and anterior back vertebrae. Such spaces, which are also found in modern theropods (that is, the birds), are interpreted as having held air sacs used in respiration. The rib cage was broad, giving it a barrel chest, especially in comparison to less derived theropods like Ceratosaurus. Allosaurus had gastralia (belly ribs), but these are not common findings, and they may have ossified poorly. In one published case, the gastralia show evidence of injury during life. A furcula (wishbone) was also present, but has only been recognized since 1996; in some cases furculae were confused with gastralia. The ilium, the main hip bone, was massive, and the pubic bone had a prominent foot that may have been used for both muscle attachment and as a prop for resting the body on the ground.

Allosaurus forelimb

Hand and claws of A. fragilis
(Picture Source)

The forelimbs of Allosaurus were short in comparison to the hindlimbs (only about 35% the length of the hindlimbs in adults) and had three fingers per hand, tipped with large, strongly curved and pointed claws. The arms were powerful, and the forearm was somewhat shorter than the upper arm). The wrist had a version of the semilunate carpal also found in more derived theropods like maniraptorans. Of the three fingers, the innermost (or thumb) was the largest, and diverged from the others. The legs were not as long or suited for speed as those of tyrannosaurids, and the claws of the toes were less developed and more hoof-like than those of earlier theropods. Each foot had three weight-bearing toes and an inner dewclaw, which could have been used for grasping in juveniles. There was also what is interpreted as the splint-like remnant of a fifth (outermost) metatarsal, perhaps used as a lever between the Achilles tendon and foot.


Scientific Classification



















Allosaurus was an allosaurid, a member of a family of large theropods within the larger group Carnosauria. The family name Allosauridae was created for this genus in 1878 by Othniel Charles Marsh, but the term was largely unused until the 1970s in favor of Megalosauridae, another family of large theropods that eventually became a wastebasket taxon. This, along with the use of Antrodemus for Allosaurus during the same period, is a point that needs to be remembered when searching for information on Allosaurus in publications that predate James Madsen's 1976 monograph.

Allosauridae is one of three families in Carnosauria; the other two are Carcharodontosauridae and Sinraptoridae. Allosauridae has at times been proposed as ancestral to the Tyrannosauridae (which would make it paraphyletic), but this has been rejected, with tyrannosaurids identified as members of a separate branch of theropods, the Coelurosauria. Allosauridae is the smallest of the carnosaur families, with only Saurophaganax and a currently unnamed French allosauroid accepted as possible valid genera besides Allosaurus in the most recent review.

Species and taxonomy

It is unclear how many species of Allosaurus there were. Seven species have been considered potentially valid since 1988 (A. amplexus, A. atrox, A. europaeus, the type species A. fragilis, the as-yet not formally described "A. jimmadseni", A. maximus, and A. tendagurensis), although only a fraction are usually considered valid at any given time. Additionally, there are at least ten dubious or undescribed species that have been assigned to Allosaurus over the years, along with the species belonging to genera now sunk into Allosaurus. In the most recent review of basal tetanuran theropods, only A. fragilis (including A. amplexus and A. atrox as synonyms), "A. jimmadseni" (as an unnamed species), and A. tendagurensis were accepted as potentially valid species, with A. europaeus not yet proposed and A. maximus assigned to Saurophaganax.

A. amplexus, A. atrox, A. fragilis, "A. jimmadseni", and A. maximus are all known from remains discovered in the KimmeridgianTithonian Upper Jurassic-age Morrison Formation of the United States, spread across the states of Colorado, Montana, New Mexico, Oklahoma, South Dakota, Utah, and Wyoming. A. fragilis is regarded as the most common, known from the remains of at least sixty individuals. Debate has gone on since the 1980s regarding the possibility that there are two common Morrison Formation species of Allosaurus, with the second known as A. atrox; recent work has followed a "one species" interpretation, with the differences seen in the Morrison Formation material attributed to individual variation. A. europaeus was found in the Kimmeridgian-age Porto Novo Member of the Lourinhã Formation, but may be the same as A. fragilis. A. tendagurensis was found in Kimmeridgian-age rocks of Tendaguru, in Mtwara, Tanzania. Although the most recent review tentatively accepted it as a valid species of Allosaurus, it may be a more basal tetanuran, or simply a dubious theropod. Although obscure, it was a large theropod, possibly around 10 meters long (33 ft) and 2.5 metric tons (2.8 short tons) in weight. 

Discovery and history

Early discoveries and research

The discovery and early study of Allosaurus is complicated by the multiplicity of names coined during the Bone Wars of the late 1800s. The first described fossil in this history was a bone obtained secondhand by Ferdinand Vandiveer Hayden in 1869. It came from Middle Park, near Granby, Colorado, probably from Morrison Formation rocks. The locals had identified such bones as "petrified horse hoofs". Hayden sent his specimen to Joseph Leidy, who identified it as half of a tail vertebra, and tentatively assigned it to the European dinosaur genus Poekilopleuron as Poicilopleuron [sic] valens. He later decided it deserved its own genus, Antrodemus.

Allosaurus itself is based on YPM 1930, a small collection of fragmentary bones including parts of three vertebrae, a rib fragment, a tooth, a toe bone, and, most useful for later discussions, the shaft of the right humerus (upper arm). Othniel Charles Marsh gave these remains the formal name Allosaurus fragilis in 1877. The bones were collected from the Morrison Formation of Garden Park, north of Cañon City. Marsh and Edward Drinker Cope, who were in scientific competition, went on to coin several other genera based on similarly sparse material that would later figure in the taxonomy of Allosaurus. These include Marsh's Creosaurus and Labrosaurus, and Cope's Epanterias.

In their haste, Cope and Marsh did not always follow up on their discoveries (or, more commonly, those made by their subordinates). For example, after the discovery by Benjamin Mudge of the type specimen of Allosaurus in Colorado, Marsh elected to concentrate work in Wyoming; when work resumed at Garden Park in 1883, M. P. Felch found an almost complete Allosaurus and several partial skeletons. In addition, one of Cope's collectors, H. F. Hubbell, found a specimen in the Como Bluff area of Wyoming in 1879, but apparently did not mention its completeness, and Cope never unpacked it. Upon unpacking in 1903 (several years after Cope had died), it was found to be one of the most complete theropod specimens then known, and in 1908 the skeleton, now cataloged as AMNH 5753, was put on public view. This is the well-known mount poised over a partial Apatosaurus skeleton as if scavenging it, illustrated as such by Charles R. Knight. Although notable as the first free-standing mount of a theropod dinosaur, and often illustrated and photographed, it has never been scientifically described.

The multiplicity of early names complicated later research, with the situation compounded by the terse descriptions provided by Marsh and Cope. Even at the time, authors such as Samuel Wendell Williston suggested that too many names had been coined. For example, Williston pointed out in 1901 that Marsh had never been able to adequately distinguish Allosaurus from Creosaurus. The most influential early attempt to sort out the convoluted situation was produced by Charles W. Gilmore in 1920. He came to the conclusion that the tail vertebra dubbed Antrodemus by Leidy was indistinguishable from those of Allosaurus, and Antrodemus thus should be the preferred name because as the older name it had priority. Antrodemus became the accepted name for this familiar genus for over fifty years, until James Madsen published on the Cleveland-Lloyd specimens and concluded that Allosaurus should be used because Antrodemus was based on material with poor, if any, diagnostic features and locality information (for example, the geological formation that the single bone of Antrodemus came from is unknown). "Antrodemus" has been used informally for convenience when distinguishing between the skull Gilmore restored and the composite skull restored by Madsen.

Cleveland-Lloyd discoveries

Although sporadic work at what became known as the Cleveland-Lloyd Dinosaur Quarry in Emery County, Utah had taken place as early as 1927, and the fossil site itself described by William J. Stokes in 1945, major operations did not begin there until 1960. Under a cooperative effort involving nearly 40 institutions, thousands of bones were recovered between 1960 and 1965. The quarry is notable for the predominance of Allosaurus remains, the condition of the specimens, and the lack of scientific resolution on how it came to be. The majority of bones belong to the large theropod Allosaurus fragilis (it is estimated that the remains of at least 46 A. fragilis have been found there, out of at minimum 73 dinosaurs), and the fossils found there are disarticulated and well-mixed.

Young Earth Creationists Claim

When it comes to dinosaur sites that have hundreds of animals that have died in one location, young earth creationists claim that this is evidence of the Flood of Noah.  However, this ignores the many other dinosaur remains that are found as individuals.  More importantly, it ignores the stratigraphic problem.  The rock layer where these allosaurs are found is located thousands of feet above the point where they claim the flood rocks begin.  How did the dinosaurs survive the deposition of the first 10,000 feet of sediment? (For more, see this article)

Nearly a dozen scientific papers have been written on the taphonomy of the site, coming up with numerous contradictory explanations for how it formed. Suggestions have ranged from animals getting stuck in a bog, to becoming trapped in deep mud, to falling victim to drought-induced mortality around a waterhole, to getting trapped in a spring-fed pond or seep. Regardless of the actual cause, the great quantity of well-preserved Allosaurus remains has allowed this genus to be known in detail, making it among the best-known theropods. Skeletal remains from the quarry pertain to individuals of almost all ages and sizes, from less than 1 meter (3.3 ft) to 12 meters (39 ft) long, and the disarticulation is an advantage for describing bones usually found fused.

Recent work: 1980s–present

The period since Madsen's monograph has been marked by a great expansion in studies dealing with topics concerning Allosaurus in life (paleobiological and paleoecological topics). Such studies have covered topics including skeletal variation, growth, skull construction, hunting methods, the brain, and the possibility of gregarious living and parental care. Reanalysis of old material (particularly of large 'allosaur' specimens), new discoveries in Portugal, and several very complete new specimens have also contributed to the growing knowledge base. Fossil footprints attributed to Allosaurus were discovered in Bałtów, Poland, by Polish paleontologist Gerard Gierliński in the early 2000s.

"Big Al"

Allosaurus Big Al

Cast Skeleton of "Big Al Two"
(Picture Source

One of the more significant Allosaurus finds was the 1991 discovery of "Big Al" (MOR 693), a 95% complete, partially articulated specimen that measured about 8 meters (about 26 ft) in length. MOR 693 was excavated near Shell, Wyoming, by a joint Museum of the Rockies and University of Wyoming Geological Museum team. This skeleton was discovered by a Swiss team, led by Kirby Siber. The same team later excavated a second Allosaurus, "Big Al Two", which is the best preserved skeleton of its kind to date.

The completeness, preservation, and scientific importance of this skeleton gave "Big Al" its name; the individual itself was below the average size for Allosaurus fragilis, and was a subadult estimated at only 87% grown. Nineteen of its bones were broken or showed signs of infection, which may have contributed to "Big Al's" death. Pathologic bones included five ribs, five vertebrae, and four bones of the feet; several damaged bones showed osteomyelitis, a bone infection. A particular problem for the living animal was infection and trauma to the right foot that probably affected movement and may have also predisposed the other foot to injury because of a change in gait. 

Return to the Old Earth Ministries Online Dinosaur Curriculum homepage.

horizontal rule


     Many fine reproductions of Allosaurus teeth, claws, skulls, and even complete skeletons, are available from several companies.  Please click the links below to visit their websites.

Bay State Replicas - Three skull varieties, complete hand, complete arm, complete foot, complete leg, humerus, jaw w/teeth, foot claw, finger claw, 1st, 2nd, and 3rd digit fingers

Black Hills Institute - Complete skeleton ($60,000), skull with neck, leg, femur, skull, reproduction head (fleshed), tooth (in matrix)